Groups acting on CAT(0) cube complexes
نویسندگان
چکیده
We show that groups satisfying Kazhdan’s property (T) have no unbounded actions on nite dimensional CAT(0) cube complexes, and deduce that there is a locally CAT(−1) Riemannian manifold which is not homotopy equivalent to any nite dimensional, locally CAT(0) cube complex. AMS Classi cation numbers Primary: 20F32 Secondary: 20E42, 20G20
منابع مشابه
Stallings’ folds for cube complexes
We describe a higher dimensional analogue of Stallings’ folding sequences for group actions on CAT(0) cube complexes. We use it to give a characterization of quasiconvex subgroups of hyperbolic groups that act properly co-compactly on CAT(0) cube complexes via finiteness properties of their hyperplane stabilizers.
متن کاملPing Pong on Cat ( 0 ) Cube Complexes
Let G be a group acting properly and essentially on an irreducible, non-Euclidean finite dimensional CAT(0) cube complex X without a global fixed point at infinity. We show that for any finite collection of simultaneously inessential subgroups {H1, . . . , Hk} in G, there exists an element g of infinite order such that ∀i, 〈Hi, g〉 ∼= Hi ∗ 〈g〉. We apply this to show that any group, acting faithf...
متن کاملCoxeter Groups Act on Cat(0) Cube Complexes
We show that any finitely generated Coxeter group acts properly discontinuously on a locally finite, finite dimensional CAT(0) cube complex. For any word hyperbolic or right angled Coxeter group we prove that the cubing is cocompact. We show how the local structure of the cubing is related to the partial order studied by Brink and Howlett in their proof of automaticity for Coxeter groups. In hi...
متن کاملNon-hyperbolic automatic groups and groups acting on CAT(0) cube complexes
This note is a brief summary of my talk that I gave at RIMS workshop “Complex Analysis and Topology of Discrete Groups and Hyperbolic Spaces.” See [4] for detail. If a group G has a finite K(G, 1) and does not contain any Baumslag–Solitar groups, is G hyperbolic? (See [1].) This is one of the most famous questions on hyperbolic groups. Probably, many people expect that the answer is negative, a...
متن کاملIsometry Groups of Cat(0) Cube Complexes
Given a CAT(0) cube complex X, we show that if Aut(X) 6= Isom(X) then there exists a full subcomplex of X which decomposes as a product with R. As applications, we prove that ifX is δ-hyperbolic, cocompact and 1-ended, then Aut(X) = Isom(X) unless X is quasi-isometric to H, and extend the rank-rigidity result of Caprace–Sageev to any lattice Γ ≤ Isom(X).
متن کامل